Soil Moisture Response to Snowmelt and Rainfall in a Sierra Nevada Mixed-Conifer Forest
نویسندگان
چکیده
Using data from a water-balance instrument cluster with spatially distributed sensors we determined the magnitude and within-catchment variability of components of the catchmentscale water balance, focusing on the relationship of seasonal evapotranspiration to changes in snowpack and soil moisture storage. Co-located, continuous snow depth and soil moisture measurements were deployed in a rain–snow transition catchment in the mixed-conifer forest in the Southern Sierra Nevada. At each elevation sensors were placed in the open, under the canopy, and at the drip edge on both northand south-facing slopes. Snow sensors were placed at 27 locations, with soil moisture and temperature sensors placed at depths of 10, 30, 60, and 90 cm beneath the snow sensor. Soils are weakly developed (Inceptisols and Entisols) and formed from decomposed granite with properties that change with elevation. The soil– bedrock interface is hard in upper reaches of the basin (>2000 m) where glaciers have scoured the parent material approximately 18,000 yr ago. Below an elevation of 2000 m soils have a paralithic contact (weathered saprolite) that can extend beyond a depth of 1.5 m, facilitating pathways for deep percolation. Soils are wet and not frozen in winter, and dry out in the weeks following spring snowmelt and rain. Based on data from two snowmelt seasons, it was found that soils dry out following snowmelt at relatively uniform rates; however, the timing of drying at a given site may be offset by up to 4 wk because of heterogeneity in snowmelt at different elevations and aspects. Spring and summer rainfall mainly affected sites in the open, with drying after a rain event being faster than following snowmelt. Water loss rates from soil of 0.5 to 1.0 cm d−1 during the winter and snowmelt season reflect a combination of evapotranspiration and deep drainage, as stream baseflow remains relatively low. About one-third of annual evapotranspiration comes from water storage below the 1-m depth, that is, below mapped soil. We speculate that much of the deep drainage is stored locally in the deeper regolith during periods of high precipitation, being available for tree transpiration during summer and fall months when shallow soil water storage is limiting. Total annual evapotranspiration for water year 2009 was estimated to be approximately 76 cm.
منابع مشابه
Mediterranean climate effects. I. Conifer water use across a Sierra Nevada ecotone.
Xylem water potential of the midelevation conifers Pinus jeffreyi, Pinus lambertiana, Abies concolor, and Calocedrus decurrens, the higher elevation Pinus monticola and Abies magnifica, and co-occurring evergreen angiosperm shrubs, together with soil moisture under these plants, were monitored at three sites on the Kern Plateau in the southernmost Sierra Nevada Range of California. Site locatio...
متن کاملSpatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments
In the western United States, mechanical thinning and prescribed fire are common forest management practices aimed at reducing potential wildfire severity and restoring historic forest structure, yet their effects on forest microclimate conditions are not well understood. We collected microclimate data between 1998 and 2003 in amixed-conifer forest in California’s Sierra Nevada. Air and soil te...
متن کاملIntroduction to the Special Issue on Sierran Mixed-Conifer Research
LIKE MUCH OF THE WESTERN UNITED STATES, California’s forest has been severely altered by a century of fire suppression. The Sierra Nevada’s largest forest type, mixed conifer, which is primary habitat for more vertebrate species than any other Californian forest community, historically burned every 12–17 years. In 1894, John Muir wrote “The inviting openness of the Sierra woods is one of their ...
متن کاملSoil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests
The effects of management on soil carbon efflux in different ecosystems are still largely unknown yet crucial to both our understanding and management of global carbon flux. To compare the effects of common forest management practices on soil carbon cycling, we measured soil respiration rate (SRR) in a mixed-conifer and hardwood forest that had undergone various treatments from June to August 2...
متن کاملBiophysical Controls on Soil Respiration in the Dominant Patch Types of an Old-Growth, Mixed-Conifer Forest
Little is known about biophysical controls on soil respiration in California’s Sierra Nevada oldgrowth, mixed-conifer forests. Using portable and automated soil respiration sampling units, we measured soil respiration rate (SRR) in three dominant patch types: closed canopy (CC), ceanothus-dominated patches (CECO), and open canopy (OC). SRR varied significantly among the patch types, ranging fro...
متن کامل